Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
1.
BMC Musculoskelet Disord ; 25(1): 359, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711079

RESUMEN

BACKGROUND: With the increasing incidence of steroid-induced necrosis of the femoral head (SNFH), numerous scholars have investigated its pathogenesis. Current evidence suggests that the imbalance between lipogenesis and osteoblast differentiation in bone marrow mesenchymal stem cells (BMSCs) is a key pathological feature of SNFH. MicroRNAs (miRNAs) have strong gene regulatory effects and can influence the direction of cell differentiation. N6-methyladenosine (m6A) is a prevalent epigenetic modification involved in diverse pathophysiological processes. However, knowledge of how miRNAs regulate m6A-related factors that affect BMSC differentiation is limited. OBJECTIVE: We aimed to investigate the role of miR27a in regulating the expression of YTHDF2 in BMSCs. METHODS: We compared miR27a, YTHDF2, and total m6A mRNA levels in SNFH-affected and control BMSCs. CCK-8 and TUNEL assays were used to assess BMSC proliferation and apoptosis. Western blotting and qRT‒PCR were used to measure the expression of osteogenic (ALP, RUNX2, and OCN) and lipogenic (PPARγ and C/EBPα) markers. Alizarin Red and Oil Red O staining were used to quantify osteogenic and lipogenic differentiation, respectively. miR27a was knocked down or overexpressed to evaluate its impact on BMSC differentiation and its relationship with YTHDF2. Bioinformatics analyses identified YTHDF2 as a differentially expressed gene in SNFH (ROC analysis) and revealed potential signaling pathways through GSEA. The effects of YTHDF2 silencing on the lipogenic and osteogenic functions of BMSCs were assessed. RESULTS: miR27a downregulation and YTHDF2 upregulation were observed in the SNFH BMSCs. miR27a knockdown/overexpression modulated YTHDF2 expression, impacting BMSC differentiation. miR27a silencing decreased m6A methylation and promoted osteogenic differentiation, while YTHDF2 silencing exerted similar effects. GSEA suggested potential signaling pathways associated with YTHDF2 in SNFH. CONCLUSION: miR27a regulates BMSC differentiation through YTHDF2, affecting m6A methylation and promoting osteogenesis. This finding suggests a potential therapeutic target for SNFH.


Asunto(s)
Adenosina/análogos & derivados , Diferenciación Celular , Células Madre Mesenquimatosas , MicroARNs , Osteogénesis , Proteínas de Unión al ARN , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Osteogénesis/genética , Humanos , Necrosis de la Cabeza Femoral/genética , Necrosis de la Cabeza Femoral/metabolismo , Necrosis de la Cabeza Femoral/inducido químicamente , Células Cultivadas , Apoptosis , Adenosina/metabolismo , Animales , Masculino , Metilación , Proliferación Celular , Lipogénesis/genética
2.
Medicine (Baltimore) ; 103(18): e37837, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701259

RESUMEN

In this study, we aimed to investigate the involvement of PANoptosis, a form of regulated cell death, in the development of steroid-induced osteonecrosis of the femoral head (SONFH). The underlying pathogenesis of PANoptosis in SONFH remains unclear. To address this, we employed bioinformatics approaches to analyze the key genes associated with PANoptosis. Our analysis was based on the GSE123568 dataset, allowing us to investigate both the expression profiles of PANoptosis-related genes (PRGs) and the immune profiles in SONFHallowing us to investigate the expression profiles of PRGs as well as the immune profiles in SONFH. We conducted cluster classification based on PRGs and assessed immune cell infiltration. Additionally, we used the weighted gene co-expression network analysis (WGCNA) algorithm to identify cluster-specific hub genes. Furthermore, we developed an optimal machine learning model to identify the key predictive genes responsible for SONFH progression. We also constructed a nomogram model with high predictive accuracy for assessing risk factors in SONFH patients, and validated the model using external data (area under the curve; AUC = 1.000). Furthermore, we identified potential drug targets for SONFH through the Coremine medical database. Using the optimal machine learning model, we found that 2 PRGs, CASP1 and MLKL, were significantly correlated with the key predictive genes and exhibited higher expression levels in SONFH. Our analysis revealed the existence of 2 distinct PANoptosis molecular subtypes (C1 and C2) within SONFH. Importantly, we observed significant variations in the distribution of immune cells across these subtypes, with C2 displaying higher levels of immune cell infiltration. Gene set variation analysis indicated that C2 was closely associated with multiple immune responses. In conclusion, our study sheds light on the intricate relationship between PANoptosis and SONFH. We successfully developed a risk predictive model for SONFH patients and different SONFH subtypes. These findings enhance our understanding of the pathogenesis of SONFH and offer potential insights into therapeutic strategies.


Asunto(s)
Biología Computacional , Necrosis de la Cabeza Femoral , Humanos , Necrosis de la Cabeza Femoral/genética , Necrosis de la Cabeza Femoral/inducido químicamente , Biología Computacional/métodos , Aprendizaje Automático , Esteroides/efectos adversos , Caspasa 1/genética , Nomogramas , Perfilación de la Expresión Génica/métodos , Proteínas Quinasas/genética
3.
J Cell Physiol ; 239(5): e31224, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38481029

RESUMEN

With the prevalence of coronavirus disease 2019, the administration of glucocorticoids (GCs) has become more widespread. Treatment with high-dose GCs leads to a variety of problems, of which steroid-induced osteonecrosis of the femoral head (SONFH) is the most concerning. Since hypoxia-inducible factor 1α (HIF-1α) is a key factor in cartilage development and homeostasis, it may play an important role in the development of SONFH. In this study, SONFH models were established using methylprednisolone (MPS) in mouse and its proliferating chondrocytes to investigate the role of HIF-1α in cartilage differentiation, extracellular matrix (ECM) homeostasis, apoptosis and glycolysis in SONFH mice. The results showed that MPS successfully induced SONFH in vivo and vitro, and MPS-treated cartilage and chondrocytes demonstrated disturbed ECM homeostasis, significantly increased chondrocyte apoptosis rate and glycolysis level. However, compared with normal mice, not only the expression of genes related to collagens and glycolysis, but also chondrocyte apoptosis did not demonstrate significant differences in mice co-treated with MPS and HIF-1α inhibitor. And the effects observed in HIF-1α activator-treated chondrocytes were similar to those induced by MPS. And HIF-1α degraded collagens in cartilage by upregulating its downstream target genes matrix metalloproteinases. The results of activator/inhibitor of endoplasmic reticulum stress (ERS) pathway revealed that the high apoptosis rate induced by MPS was related to the ERS pathway, which was also affected by HIF-1α. Furthermore, HIF-1α affected glucose metabolism in cartilage by increasing the expression of glycolysis-related genes. In conclusion, HIF-1α plays a vital role in the pathogenesis of SONFH by regulating ECM homeostasis, chondrocyte apoptosis, and glycolysis.


Asunto(s)
Apoptosis , Condrocitos , Glucólisis , Homeostasis , Subunidad alfa del Factor 1 Inducible por Hipoxia , Animales , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Glucólisis/efectos de los fármacos , Apoptosis/efectos de los fármacos , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Condrocitos/patología , Ratones , Necrosis de la Cabeza Femoral/inducido químicamente , Necrosis de la Cabeza Femoral/patología , Necrosis de la Cabeza Femoral/metabolismo , Necrosis de la Cabeza Femoral/genética , Cartílago/metabolismo , Cartílago/patología , Cartílago/efectos de los fármacos , Matriz Extracelular/metabolismo , Masculino , Modelos Animales de Enfermedad , Metilprednisolona/farmacología , Glucocorticoides/farmacología , Ratones Endogámicos C57BL , Cabeza Femoral/patología , Cabeza Femoral/metabolismo
4.
Sci Rep ; 14(1): 7301, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538713

RESUMEN

The genes of Wnt/ß-catenin pathway may have potential roles in fat accumulation of Non-traumatic osteonecrosis of the femoral head (ONFH), but the effects of their variants in the pathway on ONFH development have been remained unclear. To explore the potential roles of the variants in the development of ONFH, we completed the investigation of the paired interactions as well as their related biological functions of 17 variants of GSK3ß, LRP5, and FRP4 genes etc. in the pathway. The genotyping of the 17 variants were finished by MASS ARRAY PLATFORM in a 560 ONFH case-control system. The association of variants interactions with ONFH risk and clinical traits was evaluated by logistic regression analysis etc. and bioinformatics technology. The results showed that the genotype, allele frequency, and genetic models of Gsk3ß rs334558 (G/A), SFRP4 rs1052981 (A/G), and LRP5 rs312778 (T/C) were significantly associated with the increased and decreased ONFH risk and clinical traits, respectively (P < 0.001-0.0002). Particularly, the paired interactions of six variants as well as eight variants also showed statistically increased and decreased ONFH risk, bilateral hip lesions risk and stage IV risk of ONFH, respectively (P < 0.044-0.004). Our results not only at the first time simultaneously showed exact serum lipid disorder and abnormal platelet function of ONFH in the same study system with the 17 variants polymorphisms of Wnt/ß-catenin pathway but also shed light on the variants closely intervening the lipid disorder and abnormal coagulation of ONFH.


Asunto(s)
Necrosis de la Cabeza Femoral , Osteonecrosis , Humanos , Necrosis de la Cabeza Femoral/genética , Cabeza Femoral , beta Catenina/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Polimorfismo de Nucleótido Simple , Osteonecrosis/genética , Lípidos , China , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad
5.
J Orthop Surg Res ; 19(1): 183, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491545

RESUMEN

Osteonecrosis of the femoral head (ONFH) is a elaborate hip disease characterized by collapse of femoral head and osteoarthritis. RNA N6-methyladenosine (m6A) plays a crucial role in a lot of biological processes within eukaryotic cells. However, the role of m6A in the regulation of ONFH remains unclear. In this study, we identified the m6A regulators in ONFH and performed subtype classification. We identified 7 significantly differentially expressed m6A regulators through the analysis of differences between ONFH and normal samples in the Gene Expression Omnibus (GEO) database. A random forest algorithm was employed to monitor these regulators to assess the risk of developing ONFH. We constructed a nomogram based on these 7 regulators. The decision curve analysis suggested that patients can benefit from the nomogram model. We classified the ONFH samples into two m6A models according to these 7 regulators through consensus clustering algorithm. After that, we evaluated those two m6A patterns using principal component analysis. We assessed the scores of those two m6A patterns and their relationship with immune infiltration. We observed a higher m6A score of type A than that of type B. Finally, we performed a cross-validation of crucial m6A regulatory factors in ONFH using external datasets and femoral head bone samples. In conclusion, we believed that the m6A pattern could provide a novel diagnostic strategy and offer new insights for molecularly targeted therapy of ONFH.


Asunto(s)
Adenina/análogos & derivados , Necrosis de la Cabeza Femoral , Cabeza Femoral , Humanos , Fémur , Necrosis de la Cabeza Femoral/genética , Metilación
6.
Front Endocrinol (Lausanne) ; 15: 1341366, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38384969

RESUMEN

Purpose: Steroid-induced osteonecrosis of the femoral head (SONFH) is a refractory orthopedic hip joint disease that primarily affects middle-aged and young individuals. SONFH may be caused by ischemia and hypoxia of the femoral head, where mitochondria play a crucial role in oxidative reactions. Currently, there is limited literature on whether mitochondria are involved in the progression of SONFH. Here, we aim to identify and validate key potential mitochondrial-related genes in SONFH through bioinformatics analysis. This study aims to provide initial evidence that mitochondria play a role in the progression of SONFH and further elucidate the mechanisms of mitochondria in SONFH. Methods: The GSE123568 mRNA expression profile dataset includes 10 non-SONFH (non-steroid-induced osteonecrosis of the femoral head) samples and 30 SONFH samples. The GSE74089 mRNA expression profile dataset includes 4 healthy samples and 4 samples with ischemic necrosis of the femoral head. Both datasets were downloaded from the Gene Expression Omnibus (GEO) database. The mitochondrial-related genes are derived from MitoCarta3.0, which includes data for all 1136 human genes with high confidence in mitochondrial localization based on integrated proteomics, computational, and microscopy approaches. By intersecting the GSE123568 and GSE74089 datasets with a set of mitochondrial-related genes, we screened for mitochondrial-related genes involved in SONFH. Subsequently, we used the good Samples Genes method in R language to remove outlier genes and samples in the GSE123568 dataset. We further used WGCNA to construct a scale-free co-expression network and selected the hub gene set with the highest connectivity. We then intersected this gene set with the previously identified mitochondrial-related genes to select the genes with the highest correlation. A total of 7 mitochondrial-related genes were selected. Next, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on the selected mitochondrial-related genes using R software. Furthermore, we performed protein network analysis on the differentially expressed proteins encoded by the mitochondrial genes using STRING. We used the GSEA software to group the genes within the gene set in the GSE123568 dataset based on their coordinated changes and evaluate their impact on phenotype changes. Subsequently, we grouped the samples based on the 7 selected mitochondrial-related genes using R software and observed the differences in immune cell infiltration between the groups. Finally, we evaluated the prognostic significance of these features in the two datasets, consisting of a total of 48 samples, by integrating disease status and the 7 gene features using the cox method in the survival R package. We performed ROC analysis using the roc function in the pROC package and evaluated the AUC and confidence intervals using the ci function to obtain the final AUC results. Results: Identification and analysis of 7 intersecting DEGs (differentially expressed genes) were obtained among peripheral blood, cartilage samples, hub genes, and mitochondrial-related genes. These 7 DEGs include FTH1, LACTB, PDK3, RAB5IF, SOD2, and SQOR, all of which are upregulated genes with no intersection in the downregulated gene set. Subsequently, GO and KEGG pathway enrichment analysis revealed that the upregulated DEGs are primarily involved in processes such as oxidative stress, release of cytochrome C from mitochondria, negative regulation of intrinsic apoptotic signaling pathway, cell apoptosis, mitochondrial metabolism, p53 signaling pathway, and NK cell-mediated cytotoxicity. GSEA also revealed enriched pathways associated with hub genes. Finally, the diagnostic value of these key genes for hormone-related ischemic necrosis of the femoral head (SONFH) was confirmed using ROC curves. Conclusion: BID, FTH1, LACTB, PDK3, RAB5IF, SOD2, and SQOR may serve as potential diagnostic mitochondrial-related biomarkers for SONFH. Additionally, they hold research value in investigating the involvement of mitochondria in the pathogenesis of ischemic necrosis of the femoral head.


Asunto(s)
Necrosis de la Cabeza Femoral , Cabeza Femoral , Persona de Mediana Edad , Humanos , Necrosis de la Cabeza Femoral/inducido químicamente , Necrosis de la Cabeza Femoral/genética , ADN Mitocondrial , Mitocondrias/genética , Esteroides/efectos adversos , ARN Mensajero/genética , beta-Lactamasas , Proteínas de la Membrana , Proteínas Mitocondriales
7.
Free Radic Biol Med ; 213: 208-221, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38142952

RESUMEN

Our study investigated the possible molecular mechanism of glucocorticoid in steroid-induced osteonecrosis of the femoral head (SINFH) through regulating serum alpha-2-macroglobulin and SIRT2-mediated BMP2 deacetylation. Essential genes involved in glucocorticoid-induced SINFH were screened by transcriptome sequencing and analyzed by bioinformatics, followed by identifying downstream regulatory targets. Rat bone marrow mesenchymal stem cells were isolated and treated with methylprednisolone (MP) for in vitro cell experiments. Besides, a glucocorticoid-induced rat ONFH was established using the treatment of MP and LPS. ChIP-PCR detected the enrichment of SIRT2 in the promoter region of BMP2, and the deacetylation modification of SIRT2 on BMP2 was determined. Bioinformatics analysis revealed that glucocorticoids may induce ONFH through the SIRT2/BMP2 axis. In vitro cell experiments showed that glucocorticoids up-regulated SIRT2 expression in BMSCs by inducing oxidative stress, thereby promoting cell apoptosis. The up-regulation of SIRT2 expression may be due to the decreased ability of α2 macroglobulin to inhibit oxidative stress, and the addition of NOX protein inhibitor DPI could significantly inhibit SIRT2 expression. SIRT2 could promote histone deacetylation of the BMP2 promoter and inhibit its expression. In vitro cell experiments further indicated that knocking down SIRT2 could protect BMSC from oxidative stress and cell apoptosis induced by glucocorticoids by promoting BMP2 expression. In addition, animal experiments conducted also demonstrated that the knockdown of SIRT2 could improve glucocorticoid-induced ONFH through up-regulating BMP2 expression. Glucocorticoids could induce oxidative stress by down-regulating serum α2M to promote SIRT2-mediated BMP2 deacetylation, leading to ONFH.


Asunto(s)
Necrosis de la Cabeza Femoral , alfa 2-Macroglobulinas Asociadas al Embarazo , Femenino , Embarazo , Ratas , Animales , Glucocorticoides/farmacología , Cabeza Femoral/metabolismo , Sirtuina 2/genética , Necrosis de la Cabeza Femoral/inducido químicamente , Necrosis de la Cabeza Femoral/genética , Necrosis de la Cabeza Femoral/metabolismo , Esteroides , Factores de Transcripción , Osteogénesis
8.
J Orthop Surg Res ; 18(1): 968, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102657

RESUMEN

BACKGROUND: Osteonecrosis of the femoral head (ONFH) is a disease with a high disability rate, and genetic factors are closely related to its pathogenesis. This study aimed to investigate the possible correlation between ESR1 and APOE gene polymorphisms and the risk of ONFH. METHODS: In this case-control study, the potential association between three genetic variants (rs2982573 C < T, rs10872678 C < T, and rs9322332 A < C) of the ESR1 gene and two genetic variants (rs7259620 A < G and rs769446 C < T) of the APOE gene with the risk of ONFH was investigated. Correlations between gene polymorphisms and ONFH risk were assessed using logistic regression analysis, with calculation of odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS: The overall analysis demonstrated that rs9322332 in the ESR1 gene exhibited a correlation with a decreased risk of ONFH under the homozygous (AA vs.CC: OR = 0.69, 95% CI [0.53-0.90], p = 0.006), dominant (CA + AA vs. CC: OR = 0.70, 95% CI [0.54-0.90], p = 0.006), and additive (OR = 0.79, 95% CI [0.66-0.95], p = 0.013) models. The stratification analysis revealed that rs9322332 was linked to a lower risk of ONFH in subgroups characterized by individuals aged over 51 years and non-smokers. Nevertheless, there were no notable correlations found between ESR1 rs2982573 and rs10872678, as well as APOE rs7259620 and rs769446, with the risk of ONFH. CONCLUSION: ESR1-rs9322332 is closely linked to a decreased risk of ONFH, thereby enhancing our understanding of the relationship between gene polymorphisms and ONFH.


Asunto(s)
Apolipoproteínas E , Receptor alfa de Estrógeno , Necrosis de la Cabeza Femoral , Anciano , Humanos , Apolipoproteínas E/genética , Estudios de Casos y Controles , Cabeza Femoral , Necrosis de la Cabeza Femoral/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Receptor alfa de Estrógeno/genética
9.
Environ Res ; 238(Pt 1): 117116, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37709244

RESUMEN

BACKGROUND: Steroid-induced Avascular Necrosis of the Femoral Head (SANFH) is a condition characterized by the necrosis of the femoral head caused by long-term or high-dose hormone usage. Studies have shown that the PI3K/AKT pathway plays a crucial regulatory role in the development of SANFH. The aim of this study is to determine how external environmental factors induce changes in endogenous hormone levels, how these changes lead to steroid-induced femoral head necrosis, and the interrelationship between the changes in PIK3R5 promoter methylation levels and the regulation of the associated signaling pathways. METHODS: Femoral head samples underwent molecular sequencing analysis. Candidate genes were screened by differential gene analysis and functional enrichment analysis.Methylation level of candidate gene PIK3R5 was verified by methylation-specific PCR(MS-PCR). SANFH model was constructed in New Zealand white rabbits, and the model results were verified by magnetic resonance imaging (MRI) and haematoxylin-eosin (HE) staining.The expression of PIK3R5, PI3K and AKT in rabbit models and human specimens was verified by real-time fluorescence quantitative PCR(RT-qPCR) and Western Blot(WB), respectively. RESULTS: Human femoral head sequencing results indicate distinct differences in the methylation level and mRNA expression of PIK3R5 in SANFH. MS-PCR results showed the methylation level of SANFH patients was significantly higher than that of the control group (P < 0.01). The RT-qPCR results showed that PIK3R5 and PI3K expression levels in the SANFH group were lower than those in the control group (P < 0.05), and the WB experiment results were consistent with the RT-qPCR results. The MRI and HE staining results showed that the rabbit model of SANFH was successfully constructed, and the results of RT-qPCR and WB were consistent with the results of human tissues. CONCLUSION: During the occurrence and development of SANFH, PIK3R5 gene regulates the PI3K/AKT pathway through methylation modification, promotes the oxidative stress response of cells, and accelerates the disease process.


Asunto(s)
Necrosis de la Cabeza Femoral , Humanos , Animales , Conejos , Necrosis de la Cabeza Femoral/inducido químicamente , Necrosis de la Cabeza Femoral/genética , Necrosis de la Cabeza Femoral/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/farmacología , Metilación , Cabeza Femoral/metabolismo , Cabeza Femoral/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Esteroides/toxicidad , Esteroides/metabolismo , Hormonas/metabolismo
10.
Medicine (Baltimore) ; 102(23): e33963, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37335681

RESUMEN

Osteonecrosis of the femoral head (ONFH) is a kind of disabling disease, given that the molecular mechanism of ONFH has not been elucidated, it is of significance to use bioinformatics analysis to understand the disease mechanism of ONFH and discover biomarkers. Gene set for ONFH GSE74089 was downloaded in the Gene Expression Omnibus, and "limma" package in R software was used to identify differentially expressed genes related to oxidative stress. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyze were performed for functional analysis. We constructed a protein interaction network and identified potential transcription factors and therapeutic drugs for the hub genes, and delineated the TF-hub genes network. Least absolute shrinkage and selection operator regression, support vector machine and cytoHubba were used to screen feature genes and key genes, which were validated by Receiver operating characteristic. CIBERSORT was used to explored the immune microenvironment. Subsequently, we identified the function of key genes using Gene set variation analysis and their relationship with each type of immune cell. Finally, molecular docking validated the binding association between molecules and validated genes. We detected 144 differentially expressed oxidative stress-related genes, and enrichment analysis showed that they were enriched in reactive oxygen species and AGE-RAGE signaling pathway. Protein-protein interaction and TF-hub genes network were conducted. Further exploration suggested that APOD and TMEM161A were feature genes, while TNF, NOS3 and CASP3 were key genes. Receiver operating characteristic analysis showed that APOD, CASP3, NOS3, and TNF have strong diagnostic ability. The key genes were enriched in oxidative phosphorylation. CIBERSORT analysis showed that 17 types immune cells were differentially relocated, and most of which were also closely related to key genes. In addition, genistein maybe potential therapeutic compound. In all, we identified that TNF, NOS3, and CASP3 played key roles on ONFH, and APOD, CASP3, NOS3, and TNF could serve as diagnostic biomarkers.


Asunto(s)
Necrosis de la Cabeza Femoral , Cabeza Femoral , Humanos , Caspasa 3 , Necrosis de la Cabeza Femoral/genética , Simulación del Acoplamiento Molecular , Aprendizaje Automático , Biología Computacional
11.
J Bone Miner Res ; 38(7): 976-993, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37155311

RESUMEN

Steroid-induced osteonecrosis of the femoral head (SONFH) is a refractory, progressive disease. However, the underlying mechanisms that aggravate femoral head necrosis remain unclear. Extracellular vesicles (EVs) act as molecular carriers in intercellular communication. We hypothesize that EVs derived from human (h) bone marrow stromal cells (BMSC) resident in SONFH lesion areas promote the pathogenesis of SONFH. In the present study, we determined the modulatory effects of SONFH-hBMSCs-derived EVs on the pathogenesis of SONFH in vitro and in vivo. We found that the expression of hsa-miR-182-5p was downregulated in SONFH-hBMSCs and EVs isolated from those hBMSCs. After tail vein injection, EVs isolated from hBMSCs transfected with hsa-miR-182-5p inhibitor aggravated femoral head necrosis in the SONFH mouse model. We conclude that miR-182-5p regulates bone turnover in the SONFH mouse model via targeting MYD88 and subsequent upregulation of RUNX2 expression. We further assume that EVs derived from hBMSCs resident in SONFH lesion areas aggravate femoral head necrosis by downregulating miR-182-5p secreted from hBMSC located outside these lesions. We suggest that miR-182-5p could provide a novel target for future therapeutic approaches to treat or prevent SONFH. © 2023 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Vesículas Extracelulares , Necrosis de la Cabeza Femoral , Células Madre Mesenquimatosas , MicroARNs , Animales , Ratones , Humanos , Necrosis de la Cabeza Femoral/inducido químicamente , Necrosis de la Cabeza Femoral/genética , Necrosis de la Cabeza Femoral/metabolismo , Cabeza Femoral/metabolismo , Esteroides/efectos adversos , Vesículas Extracelulares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Mesenquimatosas/metabolismo , Progresión de la Enfermedad
12.
Commun Biol ; 6(1): 365, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012358

RESUMEN

The osteonecrotic area of steroid-induced avascular necrosis of the femoral head (SANFH) is a hypoxic microenvironment that leads to apoptosis of transplanted bone marrow mesenchymal stem cells (BMSCs). However, the underlying mechanism remains unclear. Here, we explore the mechanism of hypoxic-induced apoptosis of BMSCs, and use the mechanism to improve the transplantation efficacy of BMSCs. Our results show that the long non-coding RNA AABR07053481 (LncAABR07053481) is downregulated in BMSCs and closely related to the degree of hypoxia. Overexpression of LncAABR07053481 could increase the survival rate of BMSCs. Further exploration of the downstream target gene indicates that LncAABR07053481 acts as a molecular "sponge" of miR-664-2-5p to relieve the silencing effect of miR-664-2-5p on the target gene Notch1. Importantly, the survival rate of BMSCs overexpressing LncAABR07053481 is significantly improved after transplantation, and the repair effect of BMSCs in the osteonecrotic area is also improved. This study reveal the mechanism by which LncAABR07053481 inhibits hypoxia-induced apoptosis of BMSCs by regulating the miR-664-2-5p/Notch1 pathway and its therapeutic effect on SANFH.


Asunto(s)
Necrosis de la Cabeza Femoral , Células Madre Mesenquimatosas , MicroARNs , Humanos , Necrosis de la Cabeza Femoral/inducido químicamente , Necrosis de la Cabeza Femoral/genética , Necrosis de la Cabeza Femoral/terapia , Células Madre Mesenquimatosas/metabolismo , Apoptosis/genética , Hipoxia/metabolismo , Esteroides/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
13.
Mol Biol Rep ; 50(6): 4769-4779, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37029290

RESUMEN

BACKGROUND: Runt-related transcription factor-2 (Runx2) has been considered an inducer to improve bone repair ability of mesenchymal stem cells (MSCs). METHODS AND RESULTS: Twenty-four rabbits were used to establish Osteonecrosis of the femoral head (ONFH) and randomly devided into four groups: Adenovirus Runx2 (Ad-Runx2) group, Runx2-siRNA group, MSCs group and Model group. At 1 week after model establishment, the Ad-Runx2 group was treated with 5 × 107 MSCs transfected through Ad-Runx2, the Runx2-siRNA group was treated with 5 × 107 MSCs transfected through Runx2-siRNA, the MSCs group was injected with 5 × 107 untreated MSCs, and the Model group was treated with saline. The injection was administered at 1 week and 3 weeks after model establishment. The expression of bone morphogenetic protein 2 (BMP-2), Runx2 and Osterix from the femoral head was detected at 3 and 6 weeks after MSCs being injected, and Masson Trichrome Staining, Gross Morphology, X-ray and CT images observation were used to evaluate the repair effect of ONFH. The data revealed that the expression of BMP-2, Runx2 and Osterix in the Runx2-siRNA group was reduced at 3 weeks compared with the MSCs group, and then the expression further reduced at 6 weeks, but was still higher than the Model group besides Osterix; The expression of these three genes in the Ad-Runx2 group was higher than in the MSCs group. Masson Trichrome Staining, Gross Morphology and X-ray and CT images observation revealed that necrotic femoral head of the MSCs group was more regular and smooth than the Runx2-siRNA group, which has a collapsed and irregular femoral head. In the Ad-Runx2 group, necrotic femoral head was basically completely repaired and covered by rich cartilage and bone tissue. CONCLUSIONS: Overexpression of Runx2 can improve osteoblastic phenotype maintenance of MSCs and promote necrotic bone repair of ONFH.


Asunto(s)
Necrosis de la Cabeza Femoral , Células Madre Mesenquimatosas , Animales , Conejos , Necrosis de la Cabeza Femoral/genética , Necrosis de la Cabeza Femoral/terapia , Necrosis de la Cabeza Femoral/metabolismo , Cabeza Femoral , Células Madre Mesenquimatosas/metabolismo , ARN Interferente Pequeño/farmacología
15.
J Orthop Surg Res ; 18(1): 28, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36631868

RESUMEN

BACKGROUND: Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a common disease in osteoarticular surgery, with a high disability rate, which brings great physical and mental pain and economic burden to patients. Its specific pathogenesis has not been fully demonstrated, and there is a lack of recognized effective biomarkers for earlier detection and prompt treatment. This has become an urgent clinical problem for orthopedic scholars. MATERIALS AND METHODS: We downloaded the gene expression profile dataset GSE123568 from the Gene Expression Omnibus database, used STRING and Cytoscape to carry out module analysis and built a gene interaction network. The four core genes most related to GIONFH in this network were ultimately found out by precise analysis and animal experiment were then conducted for verification. In this verification process, thirty-six New Zealand white rabbits were randomly divided into blank control group, model group and drug group. Except for the blank control group, the animal model of GIONFH was established by lipopolysaccharide and methylprednisolone, while the drug group was given the lipid-lowering drugs for intervention as planned. The rabbits were taken for magnetic resonance imaging at different stages, and their femoral head specimens were taken for pathological examination, then the expression of target genes in the femoral head specimens of corresponding groups was detected. Validation methods included RT-PCR and pathological examination. RESULTS: A total of 679 differential genes were selected at first, including 276 up-regulated genes and 403 down-regulated genes. Finally, four genes with the highest degree of correlation were screened. Animal experiment results showed that ASXL1 and BNIP3L were in low expression, while FCGR2A and TYROBP were highly expressed. CONCLUSION: Through animal experiments, it was confirmed that ASXL1, BNIP3L, FCGR2A and TYROBP screened from the comparative analysis of multiple genes in the database were closely related to GIONFH, which is important for early diagnosis of Glucocorticoid-induced osteonecrosis of the femoral head.


Asunto(s)
Necrosis de la Cabeza Femoral , Glucocorticoides , Animales , Conejos , Cabeza Femoral/diagnóstico por imagen , Cabeza Femoral/metabolismo , Necrosis de la Cabeza Femoral/inducido químicamente , Necrosis de la Cabeza Femoral/diagnóstico por imagen , Necrosis de la Cabeza Femoral/genética , Glucocorticoides/efectos adversos , Imagen por Resonancia Magnética , Metilprednisolona/efectos adversos , Biomarcadores
16.
Biomolecules ; 13(1)2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36671556

RESUMEN

The etiology of osteonecrosis of the femoral head (ONFH) is not yet fully understood. However, ONFH is a common disease with high morbidity, and approximately one-third of cases are caused by glucocorticoids. We performed single-cell RNA sequencing of bone marrow to explore the effect of glucocorticoid on ONFH. Bone marrow samples of the proximal femur were extracted from four participants during total hip arthroplasty, including two participants diagnosed with ONFH for systemic lupus erythematosus (SLE) treated with glucocorticoids (the case group) and two participants with femoral neck fracture (the control group). Unbiased transcriptome-wide single-cell RNA sequencing analysis and computational analyses were performed. Seventeen molecularly defined cell types were identified in the studied samples, including significantly dysregulated neutrophils and B cells in the case group. Additionally, fatty acid synthesis and aerobic oxidation were repressed, while fatty acid beta-oxidation was enhanced. Our results also preliminarily clarified the roles of the inflammatory response, substance metabolism, vascular injury, angiogenesis, cell proliferation, apoptosis, and dysregulated coagulation and fibrinolysis in glucocorticoid-induced ONFH. Notably, we list the pathways that were markedly altered in glucocorticoid-induced ONFH with SLE compared with femoral head fracture, as well as their common genes, which are potential early therapeutic targets. Our results provide new insights into the mechanism of glucocorticoid-induced ONFH and present potential clues for effective and functional manipulation of human glucocorticoid-induced ONFH, which could improve patient outcomes.


Asunto(s)
Necrosis de la Cabeza Femoral , Lupus Eritematoso Sistémico , Humanos , Glucocorticoides/metabolismo , Necrosis de la Cabeza Femoral/inducido químicamente , Necrosis de la Cabeza Femoral/genética , Necrosis de la Cabeza Femoral/metabolismo , Cabeza Femoral/metabolismo , Lupus Eritematoso Sistémico/metabolismo , Análisis de Secuencia de ARN , Ácidos Grasos/metabolismo
17.
Front Endocrinol (Lausanne) ; 13: 976165, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36506078

RESUMEN

Background: Alcoholic osteonecrosis of the femoral head (ONFH) is a multifaceted illness that seriously disturbs the patients' quality of life. The role of lncRNAs in alcoholic ONFH has attracted widespread attention in recent years. This study mainly explored whether MIR31HG polymorphism affects the risk of ONFH. Methods: There were 733 males (308 alcohol-induced ONFH patients and 425 healthy controls). Seven single nucleotide polymorphisms from MIR31HG were genotyped using the Agena MassARRAY platform. Odds ratio (OR) and 95% confidence intervals (CI) via logistic regression was applied to assess the contribution of MIR31HG variants to alcoholic ONFH susceptibility. Results: We found that rs10965059 was related to a lower risk of alcoholic ONFH in the overall, age, and necrotic sites analysis. Rs10965064 also showed a risk-reducing effect in the occurrence of alcoholic ONFH patients older than 40 years old. Conclusions: We confirmed that MIR31HG variants have a significant correlation with the occurrence of alcoholic ONFH among the Chinese Han male population. our findings may provide new ideas for understanding the effect of MIR31HG on the prevention and diagnosis of alcoholic ONFH.


Asunto(s)
Necrosis de la Cabeza Femoral , Predisposición Genética a la Enfermedad , Adulto , Humanos , Masculino , Estudios de Casos y Controles , Pueblos del Este de Asia , Etanol/efectos adversos , Cabeza Femoral , Necrosis de la Cabeza Femoral/etiología , Necrosis de la Cabeza Femoral/genética , Calidad de Vida
18.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 36(11): 1420-1427, 2022 Nov 15.
Artículo en Chino | MEDLINE | ID: mdl-36382462

RESUMEN

Objective: To review the research progress of pathogenesis and genetics of alcohol-induced osteonecrosis of the femoral head (AIONFH). Methods: The relevant domestic and foreign literature in recent years was extensively reviewed. The pathogenesis, the relationship between gene polymorphism and susceptibility, the related factors of disease progression, and the potential therapeutic targets of AIONFH were summarized. Results: AIONFH is a refractory orthopedic disease caused by excessive drinking, seriously affecting the daily life of patients due to its high disability rate. The pathogenesis of AIONFH includes lipid metabolism disorder, endothelial dysfunction, bone homeostasis imbalance, and et al. Gene polymorphism and non-coding RNA are also involved. The hematological and molecular changes involved in AIONFH may be used as early diagnostic markers and potential therapeutic targets of the disease. Conclusion: The pathogenesis of AIONFH has not been fully elucidated. Research based on genetics, including gene polymorphism and non-coding RNA, combined with next-generation sequencing technology, may provide directions for future research on the mechanism and discovery of potential therapeutic targets.


Asunto(s)
Necrosis de la Cabeza Femoral , Osteonecrosis , Humanos , Cabeza Femoral/patología , Necrosis de la Cabeza Femoral/genética , Necrosis de la Cabeza Femoral/inducido químicamente , Etanol/efectos adversos , ARN no Traducido
19.
BMC Musculoskelet Disord ; 23(1): 836, 2022 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-36057712

RESUMEN

BACKGROUNDS: MIR31 host gene (MIR31HG) polymorphisms play important roles in the occurrence of osteonecrosis. However, the association of MIR31HG polymorphisms with the risk of steroid-induced osteonecrosis of the femoral head (SONFH) remains unclear. In this study, we aimed to investigate the correlation between MIR31HG polymorphisms and SONFH susceptibility in the Chinese Han population. METHODS: A total of 708 volunteers were recruited to detect the effect of seven single nucleotide polymorphisms (SNPs) in the MIR31HG gene on SONFH risk in the Chinese Han population. Genotyping of MIR31HG polymorphisms was performed using the Agena MassARRAY platform. The odds ratio (OR) and 95% confidence interval (95% CI) were used to evaluate the correlation between MIR31HG polymorphisms and SONFH risk using logistic regression model. RESULTS: According to the results of genetic model, rs10965059 in MIR31HG was significantly correlated with the susceptibility to SONFH (OR = 0.56, p = 0.002). Interestingly, the stratified analysis showed that rs10965059 was associated with the reduced risk of SONFH in subjects aged > 40 years (OR = 0.30, p < 0.001) and male populations (OR = 0.35, p < 0 .001). Moreover, rs10965059 was associated with the reduced risk of bilateral SONFH (OR = 0.50, p = 0.002). Finally, multi-factor dimension reduction (MDR) results showed that the combination of rs1332184, rs72703442, rs2025327, rs55683539, rs2181559, rs10965059 and rs10965064 was the best model for predicting SONFH occurrence (p < 0.0001). CONCLUSION: The study indicated that rs10965059 could be involved in SONFH occurrence in the Chinese Han population, which might provide clues for investigating the role of MIR31HG in the pathogenesis of SONFH.


Asunto(s)
Necrosis de la Cabeza Femoral , Cabeza Femoral , Estudios de Casos y Controles , China/epidemiología , Necrosis de la Cabeza Femoral/inducido químicamente , Necrosis de la Cabeza Femoral/diagnóstico , Necrosis de la Cabeza Femoral/genética , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética , Esteroides/efectos adversos
20.
Medicine (Baltimore) ; 101(35): e30213, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36107565

RESUMEN

Idiopathic osteonecrosis of the femoral head (INFH) seriously affects patients' activities and is a heavy burden to society and patients' families. Therefore, the early diagnosis and treatment of INFH is essential in reducing pain and burden. In the present study, the cancellous bone under the cartilage of the femoral head was isolated from patients with INFH and femoral neck fracture (FNF). Histological examination revealed that the bone trabecular and the medullary cavity in the INFH group compared with those in the FNF group. Whole-transcriptome sequencing (WTS), a recently applied technology, plays a significant role in the screening of risk factors associated with the onset of femoral head necrosis. Herein, WTS was used to obtain the mRNA expression profile in the cancellous bone of the femoral head isolated from 5 patients with INFH and 5 patients with FNF. Compared with the FNF group, a total of 155 differentially expressed genes were identified in the INFH group. Among these genes, 96 and 59 were upregulated and downregulated, respectively. Reverse transcription-quantitative PCR and western blot analyses revealed that leucine-rich repeat-containing 17 (LRRC17) displayed the most significantly decreased mRNA and protein expression levels between the INFH and FNF groups. The expression profile of the differentially expressed genes and LRRC17 protein in the INFH and FNF groups was consistent with that obtained by WTS. LRRC17, a leucine repeat sequence, plays a significant role in regulating bone metabolism, thus indicating that LRRC17 downregulation could affect bone metabolism and could be considered a key factor in the pathogenesis of INFH.


Asunto(s)
Necrosis de la Cabeza Femoral , Cabeza Femoral , Hueso Esponjoso/patología , Cabeza Femoral/patología , Necrosis de la Cabeza Femoral/genética , Necrosis de la Cabeza Femoral/patología , Humanos , Leucina , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...